Quellenangaben für die Serie „Das große Periodensystem der Elemente“

 

Perdakon Verlag Freiburg i.Br. UG (haftungsbeschränkt)

Haslacher Str. 61

79115 Freiburg i.Br.

Deutschland

 

 

Die nachfolgende Liste von Fachliteratur wurde genutzt um die Produkte „Das große Periodensystem der Elemente“ zu erstellen. Alle Angaben in den Periodensystemen sind ohne Gewähr und beruhen auf den sich ständig verändernden Forschungsergebnissen publizierender Wissenschaftler. Weiterführende Informationen sind den jeweiligen Quellen zu entnehmen. Allgemeines Lehrbuch- und Grundlagenwissen sind der gängigen Fachliteratur zu entnehmen.

 

 

ALLE PERIODENSYSTEME

 

[1] Holleman, A.F., Wiberg, E., Wiberg, N. Lehrbuch der Anorganischen Chemie. 102. Auflage. Walter de Gruyter, Berlin, 2007.

[2] Morss, L.R., Edelstein, N.M., Fuger, J., Katz, J.J. The Chemistry Of The Actinide And Transactinide Elements, sowie die darin publizierenden Autoren. Reprinted and corrected. Springer, Dordrecht, Niederlande, 2008.

[3] Fricke, B., Greiner, W., Waber, J.T. The Continuation of the Periodic Table up to Z = 172. The Chemistry of Superheavy Elements*. Theoretica Chimica Acta, 1971, 21, 235-260.

[4] Krebs, R.E. The History and Use of Our Earth’s Chemical Elements: A Reference Guide, Second Edition. Greenwood Press, Westport, Connecticut, U.S.A., 2006.

[5] Fricke, B. Superheavy elements: A prediction of their chemical and physical properties. In Structure and Bonding, 1975, 21, 89.

[6] Bratsch, S.G. Standard Electrode Potentials and Temperature Coefficients in Wate rat 298.15 K. Journal of Physical and Chemical Reference Data, 1989, 18, 1-21.

[7] Lide, R.D., sowie die darin publizierenden Autoren. CRC Handbook of Chemistry and Physics on CD-ROM, CRC Press. Taylor & Francis Group, 2009.

 

 

DAS GROßE PERIODENSYSTEM DER ELEMENTE – ISOTOPE

 

[1] Attendorn, H.-G., Bowen, R.N.C. Radioactive and Stable Isotope Geology. Springer-Science+Business Media B.V., Dordrecht, 1997.

[2] Nichols, G. Sedimentology and Stratigraphy. Wiley-Blackwell, Chichester, UK, 2009.

[3] Schwarcz, H.P. Uranium Series Dating of Quaternary Deposits. Quaternary International, 1989, 1, 7-17.

[4] Mukasa, S.B., Wilson, A.H., Carlson, R.W. A multielement geochronologic study of the Great Dyke, Zimbabwe: significance of the robust and reset ages. Earth and Planetary Science Letters, 1998,164, 353–369.

[5] Gopalan, K., Kaushal, S., Lee-Hu, C., Wetherill, G.W. Rubidium-Strontium, Uranium, and Thorium-Lead Dating of Lunar Material. Science, 1970, 167, 471-473.

[6] Peppe, D.J., Deino, A.L. Dating Rocks and Fossils Using Geologic Methods. Nature, 2013, 4(10):1.

[7] Hu, F.-F., Fan, H.-R., Liu, S., Yang, K.-F., Chen, F. Samarium–Neodymium and Rubidium–Strontium Isotopic Dating of Veined REE Mineralization for the Bayan Obo REE-Nb-Fe Deposit, Northern China. Resource Geology, 2009, 59, 407–414.

[8] Huang, W.J., Audi, G., Wang, M., Kondev, F.G., Naimi, F.G., Xu, X. The Ame2016 atomic mass evaluation - (I). Evaluation of input data; and adjustment procedures. Chinese Physics C, 2017, 41, 030002-1–030002-344.

[9] Wang, M., Audi, G., Kondev, F.G., Huang, W.J., Naimi, F.G., Xu, X. The Ame2016 atomic mass evaluation - (II). Tables, graphs and references. Chinese Physics C, 2017, 41, 030003-1–030002-442.

[10] Ivanov A. V., Boven A. A., Brandt S. B., Brandt I. S., Rasskazov S. V. Achievements and Limitations of the K-Ar and 40Ar/39Ar Methods: What's in It for Dating the Quaternary Sedimentary Deposits? Berliner Paläobiologische Abhandlungen, 2003, 4, 65-75.

[11] Münnich, K.O. Die C14-Methode. International Journal of Earth Sciences, 1960, 49, 237-244.

[12] Audi, G., Bersillon, O., Blachot, J., Wapstra, A.H. The NUBASE evaluation of nuclear and decay properties. Nuclear Physics A, 2003, 729, 3-128.

[13] International Atomic Energy Agency, isotope Methods for Dating Old Groundwater. IAEA, Austria, 2013.

[14] Carlson, R.W., Borg, L.E., Gaffney, A.M., Boyet, M. Rb-Sr, Sm-Nd and Lu-Hf isotope systematics of the lunar Mg-suite: the age of the lunar crust and its relation to the time of Moon formation. Philosophical Transactions of the Royal Society A, 2014, 372: 20130246.

 

 

DAS GROßE PERIODENSYSTEM DER ELEMENTE – GRUNDLAGEN

 

[1] Schiller, C. Motion Mountain – The Adventure of Physics – Vol. I. 25th Edition, www.motionmountain.net, 2012.

[2] Ivanov, S. Theoretical and Quantum Mechanics Fundamentals for Chemists. Springer, Dordrecht (Netherlands), 2006.

 

 

DAS GROßE PERIODENSYSTEM DER ELEMENTE – Koordination

 

[1] Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallographica, 1976, A32, 155-169.

 

 

DAS GROßE PERIODENSYSTEM DER ELEMENTE – LABORHILFE

 

[1] Küster, F. W., Rauland, A., Thiel, A. Rechentafeln für die Chemische Analytik. 104. Auflage. Walter de Gruyter, Berlin, 1993.

[2] Solubility Data Series, International Union of Pure and Applied Chemistry. Volumes 1 to 53, sowie die darin publizierenden Autoren. Pergamon Press, Oxford, 1979-1994. Des Weiteren die folgenden Werke, sowie die darin publizierenden Autoren. Herausgegeben von Oxford University Press, Oxford, nach 1994.

[3] Krumgalz, B.S. Mineral Solubility in Water at Various Temperatures. Israel Oceanographic and Limnological Research Ltd., Haifa, 1994.

[4] Stephen, H. Stephen, T. Solubilities of Inorganic and Organic Compounds - Volume 1. Macmillan, New York, 1963.

[5] Söhnel, O., Novotny, P. Densities of Aqueous Solutions of Inorganic Substances. Elsevier, Amsterdam, 1985.

[6] Clever, H. L., Johnston, F. J. The solubility of some sparingly soluble lead salts: An evaluation of the solubility in water and aqueous electrolyte solution. Journal of Physical and Chemical Reference Data, 9, 751-784, 1980.

[7] Clever, H. L., Johnson, S. A., Derrick, M. E. The Solubility of Mercury and Some Sparingly Soluble Mercury Salts in Water and Aqueous Electrolyte Solutions. Journal of Physical and Chemical Reference Data, 14, 631-680, 1985.

[8] Clever, H. L., Johnson, S. A., Derrick, M. E. The Solubility of Some Sparingly Soluble Salts of Zinc and Cadmium in Water and in Aqueous Electrolyte Solutions. Journal of Physical and Chemical Reference Data, 21, 941-1004, 1992.

[9] Potter, R. W., Clynne, M. A. Solubility of highly soluble salts in aqueous media – Part 1: NaCl, KCl, CaCl2, Na2SO4 and K2SO4 solubilities to 100 °C. Journal of Research of the U.S. Geological Survey, 6, 701-706, 1978.

[10] Clynne, M. A., Potter, R. W. Solubility of Some Alkali and Alkaline Earth Chlorides in Water at Moderate Temperatures. Journal of Chemical and Engineering Data, 24, 338-340, 1979.

[11] Perrin, D. D., Ionization Constants of Inorganic Acids and Bases in Aqueous Solution – 2nd Edition, Pergamon, Oxford, 1982.

[12] Marshal, W. L., Slusher, R. Thermodynamics of Calcium Sulfate Dihydrate in Aqueous Sodium Chloride Solutions, 0-110°. Journal of Physical Chemistry, 70, 4015-4027, 1966.

[13] Knacke, O., Gans, W. The Thermodynamics oft he System CaSO4-H2O. Zeitschrift für Physikalische Chemie Neue Folge, 104, 41-48, 1977.

 

 

DAS GROßE PERIODENSYSTEM DER ELEMENTE – RÖNTGENSPEKTROSKOPIE

 

[1] Elam, W.T., Ravel, B., Sieber, J.R. A new atomic database for X-ray spectroscopic calculations. Radiation Physics and Chemistry, 2002, 63, 121-128.

[2] McMaster, W.H., Kerr Del Grande, N., Mallett, J.H., Hubbell, J.H. Lawrence Livermore National Laboratory Report UCRL-50174 Section II Revision I. National Technical Information Service L-3. U.S. Department of Commerce, 1969.

[3] Henke, B.L., Gullikson, E.M., Davis, J.C. X-ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92. Atomic Data and Nuclear Data Tables, 1993, 54, 181-342.

[4] Chantler, C.T. Theoretical Form Factor, Attenuation, and Scattering Tabulation for Z=1–92 from E=1– 10 eV to E=0.4–1.0 MeV. Journal of Physical and Chemical Reference Data, 1995, 24, 71-643.

[5] Ravel, B., Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. Journal of Synchrotron Radiation, 2005, 12, 537-541 (und die darin zitierten Publikationen). (für Datenvisualisierung)

 

 

DAS GROßE PERIODENSYSTEM DER ELEMENTE – KRISTALLOGRAPHIE

 

[1] Aguilera, I., Friedrich, C., Blüge, S. Electronic phase transitions of bismuth under strain from relativistic self-consistent GW calculations. Physical Review B 91 (12), 2002.

[2] Ramdohr, P., Strunz, H. Klockmanns Lehrbuch der Mineralogie. Enke, Stuttgart, 1978.

[3] Hahn, Th. International Tables for Crystallography - Volume A: Space group symmetry. Springer-Verlag, 2005.

[4] Borchardt-Ott, W. Kristallographie – Eine Einführung für Naturwissenschaftler. Springer-Verlag Berlin, 2002.